top of page

 

  1. Ching-Hsue Cheng *, Hsien-Hsiu Chen Chen, Tai-Liang Chen(March, 2020).A Clinical Decision-Support System Based on Three-stage Integrated Image Analysis for Diagnosing Lung Disease.  Symmetry. https://doi.org/10.3390/sym12030386. 【SCI-E】.

  2. Shiueng-Bien Yang*,Tai-Liang Chen (June, 2020). Uncertain Decision Tree for Bank Marketing Classification. Journal of Computational and Applied Mathematics. https://doi.org/10.1016/j.cam.2020.112710  【SCI-E】.

  3. Tai-liang Chen, Cheng Ching-Hsue*,Jing-Wei Liu, (2019) A Causal Time-Series Model Based on Multilayer Perceptron Regression For Forecasting Taiwan Stock Index,International Journal of Information Technology & Decision Makinghttps://doi.org/10.1142/S0219622019500421【SCI-E】.

  4. Tai-liang Chen*, Feng-yu Chen(2019).Examining stock index return with pattern recognition model based on cumulative
    probability-based granulating method by expert knowledge.Granular Computing. https://doi.org/10.1007/s41066-018-00150-6.【ESCI】

  5. Tai-liang Chen*, Feng-yu Chen(2016). An Intelligent Pattern Recognition Model for Supporting Investment Decisions in Stock Market, Information Sciences,Volume 346-347,pp.261-274【SCI】.

  6. 陳泰良,蘇中和,蘇柏元(2016)。您幸福嗎?應用情境學習理論創作遊戲化幸福城市模擬評估系統之研究。文化創意產業研究學報 ,6卷2期, P1 - 13【THCI】

  7. Ching-Hsue Cheng, Liang-Ying Wei, Jing-Wei Liu, Tai-Liang Chen (2013).OWA-based ANFIS model for TAIEX forecasting. Economic Modelling, Volume 30, Pages 442–448【SSCI】.

  8. Tai-Liang Chen (2012). Forecasting the Taiwan Stock Market with A Novel Momentum-based Fuzzy Time-series, Review of Economics & Finance , Number 1,pp.38-50, 2012【Econlit】.

  9. Ching-Hsue Cheng, Tai-Liang Chen , Liang-Ying Wei, Jr-Shian Chen(2011).A New E-learning Achievement Evaluation Model Based on RBF-NN and Similarity Filter. Neural Computing & Applications, Vol.20, Issue 5, pp.659-669【SCI-E】.

  10. Liang-Ying Wei , Tai-Liang Chen,Tien-Hwa Ho (2011). A hybrid model based on adaptive-network-based fuzzy inference systemto forecast Taiwan stock market. Expert Systems with Applications, Vol.38 , pp.13625-13631【SCI-E】

  11. Ching-Hsue Cheng, Tai-Liang Chen, Liang-Ying Wei (2010). A Hybrid Model Based on Rough Sets Theory and Genetic Algorithms for Stock Price Forecasting. Information Sciences , Vol.180, Issue 9, pp.1610-1629 【SCI】.

  12. Chung-Ho Su, Tai-Liang Chen*, Ching-Hsue Cheng, Ya-ching Chen,(2010). Forecasting the Stock Market with Linguistic Rules Generated from the MEPA and the CDPA. Entropy, Vol.12, Issue 12, pp.2397-2417 SCI-E】.

  13. Jing-Wei Liu, Tai-Liang Chen, Ching-Hsue Cheng, Yao-Hsien Chen (2010). Adaptive-expectation based multi-attribute FTS model for forecasting TAIEX .Computers & Mathematics with Applications , Vol.59, Issue 2, pp. 795-802【 SCI】

  14. Hia Jong Teoh, Tai-Liang Chen, Ching-Hsue Cheng, Hsing-Hui Chu(2009). A hybrid multi-order fuzzy time series for forecasting stock markets. Expert Systems with Applications, Vol.36, pp.7888-7897SCI-E】.

  15. Hsing-Hui Chu, Tai-Liang Chen* Ching-Hsue Cheng, Chen-Chi Huang(2009) . Fuzzy Dual-Factor Time-series for Stock Index Forecasting. Expert Systems with Applications , Vol.36, pp. 165-171 SCI-E】.

  16. Tai-Liang Chen*, Ching-Hsue Cheng, Hia Jong Teoh (2008). High Order Fuzzy Time-series Based on Multi-period Adaptation Model for Forecasting Stock Markets. Physica A: Statistical Mechanics and its Applications ,Vol.387, pp.876-888【SCI】.

  17. Ching-Hsue Cheng, Tai-Liang Chen*, Hia Jong Teoh, Chen-Han Chiang (2008). Fuzzy time-series based on adaptive expectation model for TAIEX forecasting.  Expert Systems with Applications, Vol.34 , pp.1126-1132 SCI-E】.

  18. Tai-Liang Chen*, Ching-Hsue Cheng, Hia Jong Teoh (2007). Fuzzy time-series based on Fibonacci sequence for stock price forecasting. Physica A: Statistical Mechanics and its Applications , Vol.380 , pp. 377–390 【SCI】.

  19. Ching-Hsue Cheng, Tai-Liang Chen*, Chen-Han Chiang (2006). Trend-Weighted Fuzzy Time-Series Model for TAIEX Forecasting. Lecture Notes in computer Science , Vol. 4234, pp. 469 – 477【EI】

     

     

     

​​​​Tai-liang Chen (Ph.D.)

bottom of page